inverse trignometry formula detailed
22 Apr 2017
(i) sin (sin x) = x and sin (sin θ) = θ, provided that - ≤ θ ≤ and - 1 ≤ x ≤ 1.
(ii) cos (cos x) = x and cos (cos θ) = θ, provided that 0 ≤ θ ≤ π and - 1 ≤ x ≤ 1.
(iii) tan (tan x) = x and tan (tan θ) = θ, provided that - < θ < and - ∞ < x < ∞.
(iv) csc (csc x) = x and sec (sec θ) = θ, provided that - ≤ θ < 0 or 0 < θ ≤ and - ∞ < x ≤ 1 or -1 ≤ x < ∞.
(v) sec (sec x) = x and sec (sec θ) = θ, provided that 0 ≤ θ ≤ or < θ ≤ π and - ∞ < x ≤ 1 or 1 ≤ x < ∞.
(vi) cot (cot x) = x and cot (cot θ) = θ, provided that 0 < θ < π and - ∞ < x < ∞.
(vii) The function sin x is defined if – 1 ≤ x ≤ 1; if θ be the principal value of sin x then - ≤ θ ≤ .
(viii) The function cos x is defined if – 1 ≤ x ≤ 1; if θ be the principal value of cos x then 0 ≤ θ ≤ π.
(ix) The function tan x is defined for any real value of x i.e., - ∞ < x < ∞; if θ be the principal value of tan x then - < θ < .
(x) The function cot x is defined when - ∞ < x < ∞; if θ be the principal value of cot x then - < θ < and θ ≠ 0.
(xi) The function sec x is defined when, I x I ≥ 1 ; if θ be the principal value of sec x then 0 ≤ θ ≤ π and θ ≠ .
(xii) The function csc x is defined if I x I ≥ 1; if θ be the principal value of csc x then - < θ < and θ ≠ 0.
(xiii) sin (-x) = - sin x
(xiv) cos (-x) = π - cos x
(xv) tan (-x) = - tan x
(xvi) csc (-x) = - csc x
(xvii) sec (-x) = π - sec x
(xviii) cot (-x) = cot x
(xix) In numerical problems principal values of inverse circular functions are generally taken.
(xx) sin x + cos x =
(xxi) sec x + csc x = .
(xxii) tan x + cot x =
(xxiii) sin x + sin y = sin (x + y), if x, y ≥ 0 and x + y ≤ 1.
(xxiv) sin x + sin y = π - sin (x + y), if x, y ≥ 0 and x + y > 1.
(xxv) sin x - sin y = sin (x - y), if x, y ≥ 0 and x + y ≤ 1.
(xxvi) sin x - sin y = π - sin (x - y), if x, y ≥ 0 and x + y > 1.
(xxvii) cos x + cos y = cos(xy - ), if x, y > 0 and x + y ≤ 1.
(xxviii) cos x + cos y = π - cos(xy - ), if x, y > 0 and x + y > 1.
(xxix) cos x - cos y = cos(xy + ), if x, y > 0 and x + y ≤ 1.
(xxx) cos x - cos y = π - cos(xy + ), if x, y > 0 and x + y > 1.
(xxxi) tan x + tan y = tan (), if x > 0, y > 0 and xy < 1.
(xxxii) tan x + tan y = π + tan (), if x > 0, y > 0 and xy > 1.
(xxxiii) tan x + tan y = tan () - π, if x < 0, y > 0 and xy > 1.
(xxxiv) tan x + tan y + tan z = tan
(xxxv) tan x - tan y = tan ()
(xxxvi) 2 sin x = sin (2x)
(xxxvii) 2 cos x = cos (2x - 1)
(xxxviii) 2 tan x = tan () = sin () = cos ()
(xxxix) 3 sin x = sin (3x - 4x)
(xxxx) 3 cos x = cos (4x - 3x)
(xxxxi) 3 tan x = tan ()