inverse trignometry formula detailed

(i)  sin (sin1 x) = x and sin1 (sin θ) = θ, provided that - π2 ≤ θ ≤ π2 and - 1 ≤ x ≤ 1.
(ii) cos (cos1 x) = x and cos1 (cos θ) = θ, provided that 0 ≤ θ ≤ π and - 1 ≤ x ≤ 1.
(iii) tan (tan1 x) = x and tan1 (tan θ) = θ, provided that - π2 < θ < π2 and - ∞ < x < ∞.
(iv) csc (csc1 x) = x and sec1 (sec θ) = θ, provided that - π2 ≤ θ < 0 or  0 < θ ≤ π2  and - ∞ < x ≤ 1 or -1 ≤ x < ∞.
(v) sec (sec1 x) = x and sec1 (sec θ) = θ, provided that 0 ≤ θ ≤ π2 or π2 <  θ ≤ π and - ∞ < x ≤ 1 or 1 ≤ x < ∞.
(vi)  cot (cot1 x) = x and cot1 (cot θ) = θ, provided that 0 < θ < π and - ∞ < x < ∞.
(vii) The function sin1 x is defined if – 1 ≤ x ≤ 1; if θ be the principal value of sin1 x then - π2 ≤ θ ≤ π2.
(viii) The function cos1  x is defined if – 1 ≤ x ≤ 1; if θ be the principal value of cos1 x then 0 ≤ θ ≤ π.
(ix) The function tan1 x is defined for any real value of x i.e., - ∞ < x < ∞; if θ be the principal value of tan1 x then - π2 < θ < π2.
(x)  The function cot1 x is defined when - ∞ < x < ∞; if θ be the principal value of cot1 x then - π2 < θ < π2 and θ ≠ 0.
(xi) The function sec1 x is defined when, I x I ≥ 1 ; if θ be the principal value of sec1 x then 0 ≤ θ ≤ π and θ ≠ π2.
(xii) The function csc1 x is defined if I x I ≥ 1; if θ be the principal value of csc1 x then - π2 < θ < π2 and θ ≠ 0.
(xiii) sin1 (-x) = - sin1 x
(xiv) cos1 (-x) = π - cos1 x
(xv) tan1 (-x) = - tan1 x
(xvi) csc1 (-x) = - csc1 x
(xvii) sec1 (-x) = π - sec1 x
(xviii) cot1 (-x) = cot1 x
(xix) In numerical problems principal values of inverse circular functions are generally taken.  
(xx) sin1 x + cos1 x = π2
(xxi) sec1 x + csc1 x = π2.
(xxii) tan1 x + cot1 x = π2
(xxiii) sin1 x + sin1 y = sin1 (x 1y2 + y1x2), if x, y ≥ 0 and x2  + y2 ≤ 1.
(xxiv) sin1 x + sin1 y = π - sin1 (x 1y2 + y1x2), if x, y ≥ 0 and x2  + y2 > 1.
(xxv) sin1 x - sin1 y = sin1 (x 1y2 - y1x2), if x, y ≥ 0 and x2  + y2 ≤ 1.
(xxvi) sin1 x - sin1 y = π - sin1 (x 1y2 - y1x2), if x, y ≥ 0 and x2  + y2 > 1.
(xxvii) cos1 x + cos1 y = cos1(xy - 1x21y2), if x, y > 0 and x2  + y2 ≤  1.
(xxviii) cos1 x + cos1 y = π - cos1(xy - 1x21y2), if x, y > 0 and x2  + y2 >  1.
(xxix) cos1 x - cos1 y = cos1(xy + 1x21y2), if x, y > 0 and x2  + y2 ≤  1.
(xxx) cos1 x - cos1 y = π - cos1(xy + 1x21y2), if x, y > 0 and x2  + y2 >  1.
(xxxi) tan1 x + tan1 y = tan1 (x+y1xy), if x > 0, y > 0 and xy < 1.
 (xxxii) tan1 x + tan1 y = π + tan1 (x+y1xy), if x > 0, y > 0 and xy > 1.
(xxxiii) tan1 x + tan1 y = tan1 (x+y1xy) - π, if x < 0, y > 0 and xy > 1.
(xxxiv) tan1 x + tan1 y + tan1 z = tan1 x+y+zxyz1xyyzzx
(xxxv) tan1 x - tan1 y = tan1 (xy1+xy)
(xxxvi) 2 sin1 x = sin1 (2x1x2)
(xxxvii) 2 cos1 x = cos1 (2x2 - 1)
(xxxviii) 2 tan1 x = tan1 (2x1x2) = sin1 (2x1+x2) = cos1 (1x21+x2)
(xxxix) 3 sin1 x = sin1 (3x - 4x3)
(xxxx) 3 cos1 x = cos1 (4x3 - 3x)


(xxxxi) 3 tan1 x = tan1 (3xx313x2)

Contact Form

Name

Email *

Message *

Advertisement post header

Middle Ad Article 1

loading...

Middle Ad Article 2

loading...

Article end